

PREDICTION and 3-D VISUALIZATION of REDOX in the CENTRAL VALLEY AQUIFER, CALIFORNIA

CELIA Z. ROSECRANS, U.S Geological Survey
BERNARD T. NOLAN, Retired
KATHERINE RANSOM, University of California, Davis

CENTRAL VALLEY, CA

Background Information

Aquifer Lithology

Population & Land Use

Groundwater Use

Groundwater Quality Concerns

Response Variables

6 REDOX MODELS:

Bernoulli Error Distribution – results in a model of predicted probabilites

3 Dissolved Oxygen Models

Dissolved Oxygen event thresholds:

- < 0.5 mg/L</p>
- < 1.0 mg/L</p>
- < 2.0 mg/L</p>

3 Manganese Models

Manganese event thresholds:

- $> 50 \, \mu g/L$
- $> 150 \, \mu g/L$
- > 300 µg/L

Predictor Variables

66 predictor variables:

- Regional scale soil properties (SSURGO)
- Soil Chemistry (Smith, et al., 2013)
- Land use
- Aquifer Textures (CVTM, Faunt et al. 2010)
- Lateral Position (hydrologic position)
- Well Construction Information
- Predicted depth to water table-Spring 2000 (CVHM, Faunt et al. 2010)
- ➤ Vertical water flux (m³/day) for irrigation and non-irrigation season (CVHM, Faunt et al. 2010)

CENTRAL VALLEY, CA

Boosted Regression Trees Workflow

Measured concentrations

- 1. Predictor variables attributed to wells
- 2. Boosted regression tree modeling
- 3. Predicted probabilities made at 19 depths
- 4. Continuous 3-D map

CENTRAL VALLEY, CA:

Boosted Regression Tree Models

Model Results:

Predicted Dissolved Oxygen and Manganese Probabilities for selected thresholds at Domestic and Public Supply Depths

(USGS Scientific Investigations Map 3397:

Rosecrans et al., 2018)

 $^{Di} > 150 \, \mu g/L$

 $> 300 \mu g/L$

CENTRAL VALLEY, CA: Prediction Grids to Continuous 3-D model

Model Results

Probability of event 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.1

DO < 1.0 mg/L threshold

DO < 2.0 mg/L threshold

Mn > $50 \mu g/L$ threshold

Mn > $300 \mu g/L$ threshold

CENTRAL VALLEY, CA:

Application of Redox Predictions Grids to Central Valley Nitrate Model:

- Central Valley DO and Mn probabilities were used as predictor variables in the Central Valley Nitrate model (Ransom et al., 2017)
- Over 5000 wells with measured nitrate (mg/L as N)
- Gaussian Error Distribution: predictions are continuous

Measured concentrations

Application of Redox Predictions Grids:

1. Manganese (> 50 μg/L) Probability

2. Dissolved Oxygen (< 0.5 mg/L)
Probability

Ransom et al, 2017; Science of the Total Environment 601-602

Training R² 0.83; RMSE 0.705

Holdout R²: 0.44; RMSE 1.132

Thank you. crosecrans@usgs.gov

References:

- Faunt, C.C., Belitz, K., Hanson, R.T., 2010. Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA. Hydrogeol. J. 18, 625–649.
- Faunt, C.C., 2009. Groundwater availability in the Central Valley aquifer, California. U.S. Geological Survey Professional Paper 1776.
- Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, Federico, Kilburn, J.E., and Fey, D.L., 2013, Geochemical and mineralogical data for soils of the conterminous United States: U.S. Geological Survey Data Series 801.
- Ransom, K.M., Nolan, B.T., Traum, J.A., Faunt, C.C., Bell, A.M., Gronberg, J.M., Wheeler, D.C., Jurgens, B., Schwartz, G.E., Belitz, K., Eberts, S.M., Kourakas, G., Harter, T., 2017, A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA: Science of the Total Environment, pp. 1160-1172
- Rosecrans, C.Z., Nolan, B.T., and Gronberg, J.M., 2017, Prediction and visualization of redox conditions in the groundwater of Central Valley, California: Journal of Hydrology, 546, pp. 341-356, http://dx.doi.org/10.1016/j.jhydrol.2017.01.014
- Rosecrans, C.Z., Nolan, B.T., and Gronberg, J.M., 2017, Ascii grids of predicted pH in depth zones used by domestic and public drinking water supply depths, Central Valley, California: U.S. Geological Survey data release, https://doi.org/10.5066/F7FX77K4.
- Rosecrans, C.Z., Nolan, B.T., and Gronberg, J.M., 2018, Probability distribution grids of dissolved oxygen and dissolved manganese concentrations at selected thresholds in drinking water depth zones, Central Valley, California: U.S. Geological Survey data release, https://doi.org/10.5066/F7T151S1

CENTRAL VALLEY, CA:

Boosted Regression Trees Models

Model Results:

pH Model at Domestic and Public Supply Depths

(USGS Scientific Investigations Map 3377: Rosecrans et al., 2017)

Drinking Water Supply Wells, Central Valley, California

Celia Z. Rosecrans, Bernard T. Nolan, and Jo Ann M. Gronberg

CENTRAL VALLEY, CA: Boosted Regression Tree Models Response Variables

REDOX MODELS: Event threshold distribution

Model Evaluation

- 1. Model Metrics:
 - KAPPA
 - ACCURACY
 - ROC CURVE (receiver operator characteristic curve)
- 2. <u>Predictor Variable Ranking</u>: ranking of influence of all predictor variables for a given response variable
- 3. Partial Dependency Plots: indicate the direction of influence and show effects of a single variable on a predicted response

Model Fit Results for Disssolved Oxygen models:

Event Threshold	Model	Accuracy	KAPPA	ROC	Event s
Dissolved Oxygen <0.5 mg/L	Training	89%	0.71	0.94	n= 251
	Cross-Validation Testing	84%	0.57	0.88	11= 231
Dissolved Oxygen <1.0 mg/L	Training	88%	0.71	0.94	
	Cross-Validation Testing	86%	0.66	0.90	n=306
Dissolved Oxygen <2.0 mg/L	Training	86%	0.73	0.92	
	Cross-Validation Testing	82%	0.62	0.87	n=371

Model Fit Results for Mn models:

Event Threshold	Model	Accuracy	KAPPA	ROC	Events
Manganese: < 50 μg/L	Training (n=812)	99%	0.80	0.99	n=135
	Holdout (n=1835)	89%	0.29	0.75	n=212
Manganese: < 150 μg/L	Training (n=812)	96%	0.72	0.98	n=79
	Holdout (n=1835)	94%	0.12	0.74	n=103
Manganese: < 300 μg/L	Training (n=812)	97%	0.68	0.97	n=55
	Holdout (n=1835)	96%	0.12	0.73	n=52

Partial Dependency Plots and Predictor Variable Ranking (DO < 2.0 mg/L):

